

The following is intended to outline our general
 product direction. It is intended for information
 purposes only, and may not be incorporated into
 any contract. It is not a commitment to deliver any
 material, code, or functionality, and should not be
 relied upon in making purchasing decisions.
The development, release, and timing of any
 features or functionality described for Oracle’s
 products remains at the sole discretion of Oracle.

Real-World Database Performance
Techniques and Methods
Andrew Holdsworth
Senior Director Real-World Performance, Server Technologies

<Insert Picture Here>

Real-World Performance
 Schedule 2008

Real World Performance 2008
 Session ID: S299785

Session Title: Growing Green Databases with Oracle on the UltraSPARC CMT Processor
Track: Database
Venue: Moscone South
Room: Rm 236
Date: 2008-09-22
Start Time: 13:00

Session ID: S298786
Session Title: Current Trends in Real-World Database Performance
Track: Database
Venue: Moscone South
Room: Rm 103
Date: 2008-09-23
Start Time: 13:00

Session ID: S298792
Session Title: Real-World Database Performance Techniques and Methods
Track: Database
Venue: Moscone South
Room: Rm 104
Date: 2008-09-25
Start Time: 12:00

Session ID: S298785
Session Title: Real-World Database Performance Roundtable
Track: Database
Venue: Moscone South
Room: Rm 104
Date: 2008-09-25
Start Time: 13:30

Real-World Database Performance
Techniques and Methods
Agenda

•  Optimizer Exposé
•  Managing Statistics on Partitioned Tables
•  When to Apply the Knife to your Data/Workloads/

Databases
•  Detecting and Avoiding Hiccups in your OLTP System

<Insert Picture Here>

Optimizer Exposé

Optimizer Exposé
Common Feedback

•  The “Optimizer” has a personality and moods all of its own.
Some statements have different plans at different times of the
day.

•  The “Optimizer” never seems to use the correct index.
•  The “Optimizer” scans table when I want to use index access

and uses an index when I want a table scan.
•  Why are nested loops so bad sometimes?
•  It is impossible to figure out what the Optimizer is doing, and

why?
•  What statistics should I build to get good execution plans? How

do I do it?
•  There are hundreds of pages of Optimizer related

documentation; where do we start?

Optimizer Exposé
Upgrading Issues

•  The upgrade to Oracle 10g has proven difficult
because of changes in the default behavior of the
Optimizer and DBMS_STATS. There is a real lack of
understanding of the impact of these changes.

•  This has impacted production systems in terms of
poor performance when execution plans degrade.

•  Unpredictable performance when execution plans
change in an unpredictable manner.

•  No formal debugging methodology.
•  The tendency to make global configuration changes

to fix a small number of SQL statements.

Optimizer Exposé
Upgrading Issues

•  The move to automatic statistics gathering has
resulted in the following issues:
•  Execution plans can change literally overnight due to new

statistics
•  New histograms may be created
•  Bind peeking becomes an issue because of new histograms

•  Unfortunately most sites don’t know their execution
plans prior to upgrade

•  Without a formal debugging method, anarchy prevails
with continual “hacking” of init.ora parameters and
schema statistics to fix degraded SQL statements

Optimizer Exposé
Plan Predictability vs. Plan Evolution

•  A common request is “Can you make the Cost Based
Optimizer more like the old Rule Based Optimizer?”

•  The way the DBA chooses to create schema statistics
will have huge impact on the challenge of Plan
Predictability vs. Plan Evolution.

•  To make the Optimizer more predicable, the best way
is to restrict the variable or non-predictable
components of its functionality.

•  This may mean you don’t get the optimal execution
plan, but at least you get the same one each time,
which may be the preferred behavior.

Optimizer Exposé
Plan Predictability vs. Plan Evolution

•  Ways to achieve consistency of Execution Plans
1.  Design statistics gathering strategy to deliberately exclude

histograms and police column high/low values very
aggressively.

•  This will assume uniform distribution of data because no
histograms exist.

•  Accurate high/low values are crucial to prevent out of
range cardinality estimates.

2.  Use Oracle Tools (SQL Profiles, Outlines, etc.) These
tools use hindsight to optimize the SQL statements.

3.  Manually hint every SQL statement (effectively removing
the Optimizer from the problem !)

Optimizer Exposé
Plan Predictability vs. Plan Evolution

•  These approaches will not guarantee the best
execution plans but should result in reliable and
predictable plans.

•  Any non-performing plans can be manually corrected.
•  This approach is very suited to OLTP type

applications where consistency is very important.

Optimizer Exposé
Plan Predictability vs. Plan Evolution

•  Allowing execution plans to evolve
•  This will involve many iterations of statistics gathering.
•  You will need to re-test your application for execution plan

issues when gathering statistics, or be willing to accept the
occasional poor plan in production.

•  You should understand how to debug poorly optimized SQL
and recognize the root cause of problems.

•  If your approach is to hack init.ora parameters to resolve
execution plan issues, you probably should not be doing this
as you are clearly out of your depth. There are too many
variables involved to manage effectively.

•  The evolutionary approach is well suited to DW/BI
databases where the optimizer often has only one
chance to get it right.

Optimizer Exposé
The Six Challenges to the Cost Based Optimizer

•  The six most common challenges are related to:
1.  Data skew
2.  Bind peeking
3.  Column low/high values
4.  Data correlation between columns
5.  Cardinality Approximations
6.  The debugging process

•  These challenges are all interrelated and the solution
to solve one challenge may trigger another challenge.

•  Working on these issues is complex and frustrating.
•  In the end pragmatism will win over idealism.

Optimizer Exposé
Challenge #1: Data Skew

•  Definition:
•  a non-uniform distribution of data, generally on a per column,

per value basis

•  Diagnose by:
•  Simple query with GROUP BY to show skew
•  Poor cardinality estimates
•  Estimates may be wrong by orders of magnitude

•  Potential Solutions:
•  Determine if uniform plans or variable plans are desired
•  Histograms (be aware of bind peeking)
•  Both global and partition level stats

Optimizer Exposé
Challenge #2: Bind Peeking

•  Definition:
•  The query optimizer peeks at the values of user-defined bind variables on the

first invocation of a cursor. This feature enables the optimizer to determine
the selectivity of any WHERE clause condition as if literals have been used
instead of bind variables.

•  Histograms, high values, single partition access can impact plan choice
•  Diagnose by:

•  Execution plans change due to cursors aging – flip flop plans
•  Plans differ across cluster instances

•  Potential Solutions:
•  To insure consistency of plans, remove/manage statistics that lead to

variable execution plans
•  Eliminate histograms, or use literal predicates for columns with

histograms if alternate plans are required
•  Manage column low/high values so binds can not be out-of-range
•  Use global statistics so no single partition optimization takes place

Optimizer Exposé
Challenge #3 Column Low/High Values

•  Definition:
• DBMS_STATS gathers the low and high value for each

column

•  Diagnose by:
•  Stale statistics may cause out-of-range predicates to have

underestimated cardinality. Be very suspicious of cardinality
estimates of 1

•  Potential Solutions:
•  Regather stats
•  Manually set statistics to adjust the high value

The High/Low Value Cardinality
 Challenge

Difficult to compute the number of
rows as the high value above the

max value
Impossible to get #of rows because

lower and upper range above max value
Easy to compute #

of rows

Optimizer Exposé
Challenge #4: Data Correlation Between Columns

•  Definition:
•  Two or more columns have values that are related to one

another
•  Often times hierarchical data
•  e.g. country, state, region, zip code

•  Diagnose by:
•  Cardinality estimates are too small. Look out for Cardinality

estimates of 1.

•  Potential Solutions:
•  Dynamic sampling
•  Multi-column statistics in 11g

Correlation Example

•  Consider a table with 5 columns of number datatype
•  For any given row, all 5 columns have the same value
•  The range of values is 1 through 10
•  Each combination has 10,000 rows
•  Table has 100,000 rows

Correlation Example (2)

SQL> select c1,c2,c3,c4,c5,count(*) from correlation
 group by c1,c2,c3,c4,c5 order by c1,c2,c3,c4,c5;

 C1 C2 C3 C4 C5 COUNT(*)
------ ------ ------ ------ ------ ----------
 1 1 1 1 1 10000
 2 2 2 2 2 10000
 3 3 3 3 3 10000
 4 4 4 4 4 10000

 5 5 5 5 5 10000
 6 6 6 6 6 10000
 7 7 7 7 7 10000
 8 8 8 8 8 10000
 9 9 9 9 9 10000
 10 10 10 10 10 10000

10 rows selected.

Correlation Example (3)

Cardinality =
number of rows in table *
selectivity predicate1 *
selectivity predicate2 * …
selectivity predicateN

Cardinality =
100,000 *
1/10 *
1/10 * …
1/10

Predicate Estimated
Cardinality

Actual
 Cardinality

C1=1 10,000 10,000
C1=1 and C2=1 1,000 10,000
C1=1 and C2=1 and C3=1 100 10,000
C1=1 and C2=1 and C3=1 and C4=1 10 10,000
C1=1 and C2=1 and C3=1 and C4=1 and C5 =1 1 10,000

Optimizer Exposé
Challenge #5: Cardinality Approximations

•  Definition:
•  When using functions the optimizer assumes a cardinality as

a percentage of the rows.
•  UPPER, SUBSTR are common
•  Optimizer assumes 1% for equality estimates and 5% for

others

•  Diagnose by:
•  Cardinality estimates are wrong

•  Potential Solutions:
•  Functional indexes
•  Hinting

Optimizer Exposé
Challenge #6 The Debugging Process

•  Definition:
•  Bad plans trying to be fixed as a single event
•  Support gives resolution based on one SQL statement
•  > 95% of SQL plans are good, then fix as one offs
•  Manual optimization may be necessary for a few
•  Use stop loss approach

•  Diagnose by:
•  Large number of bad plans: probably bad statistics strategy
•  Few number of bad plans: may be edge case

•  Potential Solutions:
•  Understand the root cause of the problem and avoid the

temptation to hack global changes to fix a single statement

Debugging the Optimizer
Common Feedback

•  Where do I start?
•  Do I need to be worried about a plan with a high cost?
•  How is cost calculated?
•  What statistics/values are used in calculating cost?
•  Very little debug information

•  10053 trace impossible to read and doesn’t contain
everything I can use

Debugging the Optimizer
The common chain of events

•  Non representative statistics leads to
•  Poor cardinality estimates which leads to
•  Poor access path selection which leads to
•  Poor join method selection which leads to
•  Poor join order selection which leads to
•  Poor SQL execution times

Debugging the Optimizer
Systematic Top Down Approach

•  Start with cardinality. If the cardinality estimate is
 bad, the rest of the plan will likely be bad

•  If the cardinality estimate for a table is way off,
 validate the statistics

•  Recent statistics are not the same as representative
 statistics!

•  Sanity check
 USER_TAB_COL_STATISTICS.NUM_DISTINCT for
 the columns that have predicate filters. Does the
 value make sense?

•  Beware of row source estimates of 1 if the access
 path is not via primary key

Debugging the Optimizer
Simple Tool Box

•  11g
• DBMS_SQLTUNE.REPORT_SQL_MONITOR
•  On by default when execution is >5 seconds
•  Can be forced with MONITOR hint

•  10g
• GATHER_PLAN_STATISTICS hint used with

 DBMS_XPLAN.DISPLAY_CURSOR(format=>’ALLSTATS LAST’)

•  9i
•  Manual approach to assemble data, concept remains the

 same: first check cardinality estimates

GATHER_PLAN_STATISTICS and
DBMS_XPLAN.DISPLAY_CURSOR

select /*+ gather_plan_statistics */ ... from ... ;
select * from
table(dbms_xplan.display_cursor(null,null,'ALLSTATS LAST'));

--
| Id | Operation | Name | Starts | E-Rows | A-Rows |
--
1	SORT GROUP BY		1	1	1
* 2	FILTER		1		1728K
3	NESTED LOOPS		1	1	1728K
* 4	HASH JOIN		1	1	1728K
5	PARTITION LIST SINGLE		1	6844	3029
* 6	INDEX RANGE SCAN	PROV_IX13	1	6844	3029
7	PARTITION LIST SINGLE		1	5899	5479K
* 8	TABLE ACCESS BY LOCAL INDEX ROWID	SERVICE	1	5899	5479K
* 9	INDEX SKIP SCAN	SERVICE_IX8	1	4934	5479K
10	PARTITION LIST SINGLE		1728K	1	1728K
* 11	INDEX RANGE SCAN	CLAIM_IX7	1728K	1	1728K
--

Concluding the Debugging Process

•  Most execution plans are a function of bad cardinality
 estimates. Again watch out for cardinality Estimates
 of 1 !

•  Poor plans with good cardinality estimates with
 default system statistics and init.ora settings may be
 candidates as a bug.

•  You biggest frustration will be understanding how
 cardinality estimates are calculated as this is not
 traceable.

<Insert Picture Here>

Managing Statistics on
 Partitioned Tables

Which Statistics to Build ?

Global Stats

Partition Stats

Subpartition
Stats

Subpartition
Stats

Subpartition
Stats

Partition Stats

Subpartition
Stats

Subpartition
Stats

Subpartition
Stats

Managing Stats on Partitioned Tables
Common Feedback

•  What should my statistics gathering strategy be for
partitioned tables?

•  How do I maintain them and what are the challenges?
•  What is best practice?
•  Many conflicting opinions.

Global Statistics vs.
Global and Partition Statistics

•  Controlled by GRANULARITY parameter in
 DBMS_STATS.GATHER_*

•  If partition distribution is uniform, GLOBAL statistics
 may be enough

•  If partition distribution is skewed, GLOBAL and
 PARTITION are recommended

•  ALL (GLOBAL/PARTITION/SUBPARTITION) is
 generally only gathered for non-hash subpartitions
 (range or list). This is the default.

Partition Copy Statistics
Introduced 10.2

•  Invoked via DBMS_STATS.COPY_TABLE_STATS
•  Allows partition statistics to be cloned from another

 partition
•  Be aware:

•  10.2.0.4 does not adjust the high value of the partition key
 column for the new partition and does not update the global
 high value for the partition key column

•  11.1.0.6 does adjust the high value of the partition key
 column for the new partition but does not update the global
 high value for the partition key column

•  High value partition adjustment fixed in patch for 10.2

Partition Incremental Statistics

•  New in 11g
•  Only available for partitioned tables
•  Stores the synopsis for each partition in SYSAUX
•  Global statistics are then created from the

 aggregation of the partition synopses. Eliminates
 FTS for global statistics.

•  Must be manually enabled for each table
•  DBMS_STATS.SET_TABLE_PREFS(

OWNNAME =>‘SALES’,
TABNAME =>’SALES_FACT’,
PNAME =>'INCREMENTAL',
PVALUE =>'TRUE’);

11g Incremental Stats Time Savings

Partition Exchange Statistics

•  Statistics are gathered on staging table being exchanged
•  Partition exchange does not update GLOBAL statistics

•  GLOBAL statistics should be gathered later, no need to regather
 PARTITION stats

•  GLOBAL statistics become stale when:
•  Partition exchange is used
•  Partition statistics are copied/cloned
•  Statistics are gathered with GRANULARITY=>’PARTITION’

•  Incremental stats in 11g can not be used on the staging table, as
 it only works on partitioned tables. After the exchange, 11g
 incremental statistics can be used.

<Insert Picture Here>

When to Apply the Knife
 to Your Data

Moore’s Law Reality Check
Above Moore’s Law Systems
•  Systems or Processes being automated for the first time

e.g. New businesses in countries with large populations
•  New business processes or innovative companies
•  System consolidation projects
•  Usually involve large and non commodity HW

Below Moore’s Law Systems
• Existing systems that growth
curve is almost flat
• Processes constrained by
business reality or physical items.

• Able to realize the benefits of
Commodity HW

When to Apply the Knife to your Data
/Workloads/Databases

•  Please keep this discussion in context. If you are below the
 Moore’s Law curve many of the techniques I will describe may
 not be relevant.

•  Segmentation of data, workloads or databases may be driven by
 the desire to be below the curve and embrace the economies of
 commodity hardware.

•  The Industry challenge is continually increasing data sizes,
 workloads and aggressive performance requirements.

•  An obvious approach when something gets big is to start
 breaking it up in to smaller, more manageable pieces.

•  This topic is one of the toughest design problems an Enterprise
 Architect has to address.

Why We Must Think Carefully Before
 Applying the Knife

•  Remember why you used a relational database in the
 first place
•  Single point of truth
•  Ability to join and query data across multiple columns
•  Simplified development
•  Reduced systems and application maintenance

•  As soon as you start cutting up datasets and
 databases the value of the database and its contents
 looses value.

Why We Must Think Carefully Before
 Applying the Knife

•  Oracle has always been an advocate of single
 databases for the following reasons
•  The ability to answer all the queries and evolve the business

 within a single datastore.
•  The economies of scale in administration
•  Avoid the problems of multi database coherency

Data Segmentation

•  Data segmentation is usually achieved within Oracle
 Databases by the use of Partitioning techniques.

•  The primary uses of Partitioning are as follows
•  Large object management:

•  Makes large table(s) manageable in acceptable times e.g.
 Index Builds, Statistics Gathering

•  Allows fast load/purge techniques via EXCHANGE
•  Query Optimization techniques

•  Partition pruning
•  Join and Sort Optimization

•  Contention or Hot spot management
•  Right growing Indexes

Data Segmentation

•  Partitioning techniques are very effective when the
 goals are clearly defined.

•  However we must remember that by “applying the
 knife” there will be some implications which may
 impact the performance and availability of other
 operations within the database.

Data Segmentation

•  The challenges you will face with partitioning will
 relate to:
•  LOCAL vs GLOBAL Indexes

•  Tables with GLOBAL indexes do not EXCHANGE quickly
•  Queries on LOCAL Indexes may require multiple probes

 which has an impact on query performance
•  Statistics Gathering

•  The challenges of GLOBAL vs PARTITION
•  Trading off all requirements of your partitioning strategy

•  You get to apply the knife twice (PARTITION and
 SUBPARTITION)

•  Do you optimize for management, query performance or
 scalability ?

Data Segmentation Challenges

Partition Table Goal Design Challenges and Observations

Large Object
 Management

Almost mandates use of LOCAL Indexes if
 EXCHANGE is used for load/purge activities.
 Downstream query implications. Statistics
 Management may prove challenging.

Partition Pruning and
 Join/Sort Optimization

Selecting partitioning columns based on often
 unknown workloads. Most designs resort to time
 based partitions with hash to support joins.

Contention
 Management

Often done in a rush to satisfy INSERT contention
 issues in clusters. Downstream queries often
 neglected.

Workload Segmentation

•  The consistency of response time critical
 applications(<5ms) is a function of the following
•  Locating the database blocks within the local instance cache
•  The ability to read/modify the database blocks without

 contention
•  This encourages memory resident databases.
•  The design challenges are:

•  What happens if the dataset is bigger than the buffer cache
•  What happens if the CPU on the host cannot sustain the

 workload
•  In this case we need to look at workload

 segmentation within a cluster

Workload Segmentation

•  Workload Segmentation attempts to build up memory
 caches of specific rows often defined by data ranges
 or other attributes.

•  The goal of this is to ensure zero block contention and
 very high cache hit ratio.

•  This ensures response time targets are met with the
 required scaling of transaction rates.

Workload Segmentation
•  The designer’s challenge for a segmented work load are as

 follows:
•  Determine on what table attributes a transaction can be routed. This

 is often a primary key of a driving entity e.g. cust_id, order_id,
 security_id etc.

•  Build data and indexing partitioning strategies to support the
 response time critical transactions

•  Encode routing strategies within middleware/database connection
 techniques

•  Enforcing the techniques with developers
•  This process is always a matter of compromise and in more

 complex data models may be near-impossible to achieve.
•  Systems that do achieve a high degree of success using these

 techniques tend to have very simple, denormalized schemas
 and are focused on executing a very small set of transactions.
 They do not harness the full value of the relational model on
 these systems.

Database Segmentation

•  The last resort is to start splitting a database into multiple
 databases into a federation of similar databases

•  This process is not for your average database and the goal
 here is to support a specific workload for the database.

•  The types of companies that do this tend to have huge
 growth curves and are willing to write a great deal of
 middleware code.

•  Examples include The World’s Biggest Websites, Trading
 Systems, Transport ticketing systems etc.

•  Database segmentation is often done for risk mitigation
 purposes. Companies of a critical size do not wish to
 stake their entire business on single database.

Database Segmentation

•  The designer’s challenges for a segmented database
 include the following
•  Segmentation of the schema
•  Routing of transactions
•  Addressing distributed transactions over multiple databases
•  Middleware logic. The middleware may require cache

 resident databases (TimesTen or Coherence) to cache
 routing information. E.g. Entity to DB translation.

•  Each element of the federated database can be a
 clusters with its own availability/failover strategy.

<Insert Picture Here>

Detecting and Avoiding
 Hiccups in your OLTP
 System

Detecting and Avoiding Hiccups in
your OLTP System

•  Over the last year, the Real World Performance
Group has studied why OLTP systems may suddenly
slow down and become unpredictable.

•  We have many Oracle OLTP systems that are
pushing over 5000 SQL statements a second.

•  With this arrival rate, these systems cannot stall as
this will result in back logs, queues in the application
servers, often connection storms and generally a poor
user experience

Detecting and Avoiding Hiccups in
your OLTP System

•  Over the last few years we have developed some
techniques to help you debug unexplained system
slowdowns.

•  To demonstrate these techniques we will use the
example of a recurring series of bugs we have seen
over the last year.

•  To perform good debugging you need good statistics.
From version 10g onwards there is no excuse not to
obtain good statistics.

LGWR Example

•  In many Oracle systems we see “log file sync” as the most
dominant event

•  In many cases this is the expected behavior but we started to
see patterns of behavior when it should not have been the
dominant event.

•  In many cases the “log file sync” was seen as impacting
scalability as well the user response time.

•  The frustrating thing was that the average values for the “log file
sync” seemed acceptable as did the actual redo log write time.

•  In many cases our clients had moved redo logs to dedicated
storage and even solid state devices and performance had
barely improved.

Debug using v$event_histogram

select
event, -- The actual wait event
wait_time_milli, -- milli second bucket
wait_count, -- count within bucket
wait_time_milli*wait_count -– Weighted Value
from v$event_histogram
where event in (‘log file sync’)
order by 1,2
/

Debugging the Output

0

5

10

15

20

25

1 2 4 8 16 32 64 128 256 512 1024

Count
Count x Elapsed

Conclusions from this Exercise

•  Statistical averages can be very misleading
•  Identification of the outliers provided the answers
•  The bugs have since been fixed !

Hiccups Caused by Database
Administration

•  Statistics management
•  Statistics update

•  Cursor invalidations
•  Automatic Gathering

•  Partition management
•  Exchange operations
•  Statistics management
•  Index management

•  Other issues
•  Datafile extensions
•  Grants

<Insert Picture Here>

Wrap Up

The Performance Core Disciplines
 Revisited

•  To be good at real-world performance you must be
 able to do root cause analysis for the performance
 problem.

•  Understanding the following disciplines and how they
 are interconnected defines the role of the
 performance specialist:
•  SQL execution plans
•  Buffer cache efficiency
•  Connection and cursor management
•  Contention identification and management
•  Hardware capacity planning

•  Thank you see you in the next session.

<Insert Picture Here>

Examples

Cloning Partition Stats
Step 1: Copy

begin
 dbms_stats.copy_table_stats(
 ownname=>user,
 tabname=>'FOO',
 srcpartname=>'P20080813',
 dstpartname=>'P20080814'
);
end;
/
-- 10g does not automatically adjust the partition high value
-- 11g does
PARTITION_NAME LOW_VAL HIGH_VAL
-------------- -------------------- --------------------
P20080813 2008-08-13 00:00:00 2008-08-13 23:59:59
P20080814 2008-08-13 00:00:00 2008-08-13 23:59:59

Cloning Partition Stats
Step 2: Adjust partition key column high value (10g)

declare
 srec dbms_stats.statrec;
 datevals dbms_stats.datearray;
begin
 srec.eavs := 0;
 srec.chvals := null;
 datevals:= dbms_stats.datearray(
 to_date('2008-08-14 00:00:00','yyyy-mm-dd hh24:mi:ss'),
 to_date('2008-08-14 23:59:59','yyyy-mm-dd hh24:mi:ss'));
 srec.bkvals := dbms_stats.numarray(0,1);
 srec.epc := 2;
 dbms_stats.prepare_column_values(
 srec=>srec,
 datevals=>datevals
);
 dbms_stats.set_column_stats(
 ownname=>user,
 tabname=>'FOO',
 colname=>'PART_KEY',
 partname=>'P20080814',
 srec=>srec
);
end;
/

Cloning Partition Stats
Step 3: Adjust Global (Table) High Value

declare
 srec dbms_stats.statrec;
 datevals dbms_stats.datearray;
begin
 srec.eavs := 0;
 srec.chvals := null;
 datevals:= dbms_stats.datearray(
 to_date('2008-08-12 00:00:00','yyyy-mm-dd hh24:mi:ss'),
 to_date('2008-08-14 23:59:59','yyyy-mm-dd hh24:mi:ss'));
 srec.bkvals := dbms_stats.numarray(0,1);
 srec.epc := 2;
 dbms_stats.prepare_column_values(
 srec=>srec,
 datevals=>datevals
);
 dbms_stats.set_column_stats(
 ownname=>user,
 tabname=>'FOO',
 colname=>'PART_KEY',
 srec=>srec,
 distcnt=> 3*86400 --hardcoded value. Use get_column_stats for actual value
end;
/

The preceding is intended to outline our general
 product direction. It is intended for information
 purposes only, and may not be incorporated into
 any contract. It is not a commitment to deliver any
 material, code, or functionality, and should not be
 relied upon in making purchasing decisions.
The development, release, and timing of any
 features or functionality described for Oracle’s
 products remains at the sole discretion of Oracle.

